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Electrophoresis techniques are characterized by
concentration disturbances (or waves) propagating
under the effect of an electric field. These techniques
are usually performed in microchannels where
surface conduction through the electric double layer
(EDL) at channel walls is negligible compared with
bulk conduction. However, when electrophoresis
techniques are integrated in nanochannels, shallow
microchannels or charged porous media, surface
conduction can alter bulk electrophoretic transport.
The existing mathematical models for electrophoretic
transport in multi-species electrolytes do not account
for the competing effects of surface and bulk
conduction. We present a mathematical model of
multi-species electrophoretic transport incorporating
the effects of surface conduction on bulk ion-transport
and provide a methodology to derive analytical
solutions using the method of characteristics.
Based on the analytical solutions, we elucidate
the propagation of nonlinear concentration waves,
such as shock and rarefaction waves, and provide
the necessary and sufficient conditions for their
existence. Our results show that the presence of
surface conduction alters the propagation speed of
nonlinear concentration waves and the composition
of various zones. Importantly, we highlight the role
of surface conduction in formation of additional
shock and rarefaction waves which are otherwise not
present in conventional electrophoresis.

1. Introduction
Electrophoresis techniques such as capillary zone electro-
phoresis (CZE), field-amplified sample stacking (FASS)

2016 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. Schematic illustrating the effect of surface conduction through the EDL on bulk electrophoretic transport. (a) EDL
and bulk solution can be modelled as resistors in parallel with σEDL and σB as their respective conductivities. (b) For an
electrophoretic system consisting of a single counter-ionic species (having charge polarity opposite to that of surface charge)
and arbitrarily large number of co-ionic species, we model the EDL as delta distribution of counter-ions at the channel walls
with vanishingly small thickness δ. (c) Propagation of nonlinear concentration waves in ITP. The analytes focus between LE and
TE zones. These zones are separated by self-sharpening concentration shock waves.

and isotachophoresis (ITP) are used widely for separation and in some cases, preconcentration
of ionic species from sample mixtures [1,2]. Separation and preconcentration in electrophoresis
techniques are based on differential electrophoretic mobilities of ionic species, that is, speed of
ions in the electrolyte solution per unit applied electric field [3]. Electrophoresis techniques are
typically characterized by linear and nonlinear concentration waves (disturbances in species
concentration) propagating under the effect of electric field. Linear concentration waves are
observed in CZE where analyte concentrations are small compared with those of background
electrolyte. Therefore, propagation of analyte zones in CZE does not alter the local electrical
conductivity and electric field, resulting in linear waves. For finite amplitude concentration
disturbances such as those observed in ITP and during electromigration dispersion in CZE,
nonlinearity in electromigration results in formation of shock and rarefaction waves [3–6].
The nonlinearity results due to the dependence of electromigration flux on local electric field,
which in turn depends on the species concentrations through Ohm’s law [5]. In CZE, nonlinear
waves are undesirable as they result in unwanted dispersion of analyte zones [5,6] whereas
in ITP, self-sharpening shock waves enable simultaneous preconcentration and separation of
analytes between zones of high-mobility (LE) ions and low-mobility trailing electrolyte (TE)
ions (figure 1a) [1,2]. The self-sharpening nature of shock waves separating analyte zones in
ITP counter molecular diffusion of analytes and can enable over million-fold preconcentration
of analytes [7].

Typically, electrophoresis experiments are performed in microchannels or microcapillaries
with characteristic internal dimension h of O(10 − 100 µm), analyte concentrations of O(10 mM)
and electric field of O(104 V m−1) [1,2]. For electrolyte ionic strength of O(10 mM) inside a
microchannel, the thickness of electric double layer (EDL) at the charged channel surface is
O(1 nm) [8], which is over four orders of magnitude smaller than the channel thickness. The
ratio of tangential current through EDL (surface conduction) to the current passing through bulk
solution (bulk conduction) approximately scales as ρw/(zcFh) [9,10]. Here, z and c are, respectively,
the characteristic valence and concentration of ions in bulk solution, F is the Faraday’s constant
and ρw is the surface charge density. With surface charge density of O(0.1 C m−2), in conventional
electrophoresis experiments the contribution of surface conduction in the EDL to overall
conduction through the electrolyte is negligible (ρw/(zcFh) ∼O(10−3 − 10−2)). Consequently, the
presence of EDL does not affect the bulk electrophoretic transport; the only effect of EDL on bulk
transport of ions is through electro-osmotic flow.
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Recent technological advancements in nanofabrication have led to integration of electro-
phoresis techniques, such as FASS and ITP, in shallow microchannels and nanochannels with
characteristic internal dimensions of O(0.1 − 1 µm) [11–13]. In such cases, even when the EDL
thickness is significantly smaller than the internal dimensions of channel, the surface conduction
can be comparable with bulk conduction (ρw/(zcFh) ∼O(0.1 − 1)). Therefore, the presence of
EDL in shallow microchannels and nanochannels can significantly alter the overall dynamics of
electrophoretic transport. Similar situation can occur in electrochromatograhy in ion-exchange
porous media [14]. When surface conduction is negligible compared with bulk conduction,
concentration gradients in a binary electrolyte in the presence of collinear electric field remain
stationary and simply diffuse under the effect of molecular diffusion. However, when surface
conduction is of comparable magnitude with the bulk conduction, nonlinearity induced by
surface conduction causes the concentration gradients in binary electrolyte to either sharpen or
disperse to form shock or rarefaction wave, respectively [9]. Similarly, surface conduction can
have a significant effect on ion-transport in multi-species (more than two species) electrophoretic
systems such as ITP [12].

Propagation of nonlinear concentration waves during electrophoresis in binary electrolytes
due to the competing effects of surface and bulk conduction has been modelled by Mani
et al. [9,10] and experimentally validated by Zangle et al. [11]. However, the model of Mani
et al. [9,10] is not applicable for analysing multi-species electrophoretic processes as it does not
account for nonlinearities induced by electromigration of multiple species. Note that, multi-
species electromigration is nonlinear even in the absence of surface conduction. On the other
hand, existing mathematical models for multi-species electrophoretic systems [4,15] are not
applicable for electrophoresis systems where surface conduction competes with bulk conduction.
This is because, the existing models assume non-zero electrophoretic mobilities and hence they
cannot account for surface charge which results from immobile ionic species at the channel
surface. To our knowledge, no mathematical model exists which accounts for the effects of surface
conduction on bulk electrophoretic transport in multi-species electrolyte systems.

We here present a novel mathematical model for electrophoretic transport in multi-species
electrolyte systems considering the effects of both surface and bulk conduction. Our model
is applicable for electrophoretic systems consisting of arbitrarily large number of co-ions,
having same charge polarity as the surface charge, and a single counter-ion. We also provide
a methodology for obtaining analytical solutions to the governing equations of model. To
this end, we reformulate the governing equations for electrophoretic transport in terms
of Riemann invariants and solve them using the method of characteristics. Based on the
analytical solutions to the governing equations, we highlight the effects of surface conduction
on propagation of nonlinear waves in electrophoresis. In particular, we show that unlike in
conventional electrophoresis, the zone concentrations do not obey the Kohlrausch regulating
function [16] when surface conduction is prominent. Using the example of ITP, we show that
surface conduction alters the zone compositions and propagation speed of concentration waves.
Moreover, surface conduction results in formation of new concentration shock or rarefaction
waves which are otherwise not present in conventional electrophoresis techniques.

2. Mathematical modelling
The species transport equations which govern the transport of ions due to advection,
electromigration and diffusion in an electrolyte solution consisting of (N + 1) ionic species are
given by

∂ci

∂t
+ ∇ · [uci + μiciE − Di∇ci] = 0, i = 1, 2, . . . , N + 1, (2.1)

where ci,μi and Di, respectively, denote the concentration, electrophoretic mobility and molecular
diffusivity of ionic species i in the bulk solution. In this equation, u is the bulk fluid velocity and
E the applied electric field. Here we have assumed that all species in the electrolyte solution are
fully ionized and we have neglected the effect of ionic strength on electrophoretic mobilities of
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ions [17]. Therefore, we treat electrophoretic mobilities and molecular diffusivities of all ionic
species as constants.

The nature of concentration waves in electrophoresis and their propagation are primarily
governed by electromigration. Molecular diffusion only acts to diffuse the gradients, while bulk
fluid flow advects all the waves at same velocity. In a majority of electrophoresis experiments,
particularly those performed in microfluidic chips, applied electric field is high (O(104 V m−1))
and experiment time is short (O(100 s)). Consequently, diffusive effects are small compared with
electromigration. Moreover, for self-sharpening shock waves, the diffusive effects are primarily
limited to sharp zone boundaries and diffusion only acts to broaden the zone boundaries.
Therefore, in our analysis we neglect the effect of molecular diffusion as it does not affect the
zone compositions, wave speeds and nature of waves. In addition, if we analyse the system in a
frame of reference translating with the bulk fluid, we need not account for the bulk fluid motion
due to electro-osmotic flow (EOF) and pressure driven flow. This is because, the bulk motion
of fluid simply advects the nonlinear concentration waves without affecting their evolution
and nature. To further simplify our analysis, we consider electrophoretic transport in channels
with axially-uniform cross section with area A and internal perimeter P. As the concentration
gradients in electrophoresis are primarily in the axial direction, the governing equations (2.1), can
be simplified using the above assumptions to

∂ci

∂t
+ ∂(μiciE)

∂x
= 0, i = 1, 2, . . . , N + 1, (2.2)

where x denotes the axial coordinate and E the axial electric field. The spatio-temporal evolution
of species concentrations depends on the local electric field in the electrolyte solution. The
local electric field in bulk solution and EDL can be modelled using the Poisson’s equation of
electrostatics. However, the coupled set of equations consisting of the system of conservation
laws (2.2) and the Poisson’s equation is stiff. To avoid solving a stiff system, we here use the
approximation proposed by Mani et al. [9], wherein EDL is modelled as a delta distribution of
counter-ions at the channel walls having opposite charge polarity compared with the surface
charge. The counter-ions in the EDL screen the surface charge and hence the bulk solution outside
the EDL is assumed to be electroneutral. This approximation has been referred to as the ‘Leaky
Membrane Model’ by Yaroshchuk [18] and Dydek & Bazant [19] in their analysis of concentration
polarization in non-ideally perm-selective (‘leaky’) charged porous media due to electrophoretic
transport in binary electrolytes. This assumption is illustrated in figure 1a,b, where the EDL is
approximated as a zone of vanishingly small and uniform thickness δ. The EDL and bulk solution
can be considered as two parallel conductive layers through which current can flow as shown
in the equivalent circuit diagram in figure 1c. That is, the total current IT through the electrolyte
solution is the sum of currents through the EDL IEDL and the bulk solution IB, respectively. As
the bulk solution is electroneutral, the electric field in bulk E in the absence of diffusive current is
given by Ohm’s law [3],

E = IB

(A − Pδ)σB
, σB =

N+1∑
i=1

ziμiciF, (2.3)

where σB is the local electrical conductivity of the bulk solution, F the Faraday’s constant and
(A − Pδ) the cross-sectional area of channel excluding the EDL. Next, using the electroneutrality
assumption

∑N+1
i=1 zici = 0, the relation for bulk conductivity σB can be simplified in terms of

concentrations of only N species,

σB =
N∑

i=1

zi(μi − μN+1)ciF. (2.4)

Equation (2.3) relates the local electric field (E) and the current in bulk solution (IB). However,
in electrophoresis experiments only total current, IT = IB + IEDL, can be measured and often
maintained constant. Therefore, to find a relationship between electric field and total current,
we consider the contribution of surface conduction to the total current. We model the EDL as
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a narrow zone of thickness δ consisting of only counter-ions; we take (N + 1)th species as the
lone counter-ionic species and species 1 to N as co-ions. Noting that the counter-ions in EDL
completely screen the wall surface charge density ρw, the counter-ion concentration in the EDL
is given by c′

N+1 = −ρw/(zN+1Fδ). Therefore, the species transport equation for the counter-ions,
equation (2.2), in the EDL can be written as

1
δ

∂ρw

∂t
− ∂(σEDLE)

∂x
= 0, σEDL = −μN+1

ρw

δ
, (2.5)

where by following Mani & Bazant [10], we have neglected the convective contribution to the
current density to the current through the EDL. If we assume that the wall surface charge density
is fixed, equation (2.5) yields a relation between E and IEDL which resembles the Ohm’s law

E = IEDL

PδσEDL
, (2.6)

despite the fact that the EDL is not electroneutral. Here, Pδ is the cross-sectional area of EDL.
Next, using equations (2.3) and (2.6), and noting that IT = IB + IEDL, we obtain a relation between
electric field (E) and total current (IT),

E = IT

(σB(A − Pδ) + σEDLPδ)
. (2.7)

Finally, using this expression for electric field in the equation (2.2) along with the relations
for σB (equation (2.4)) and σEDL (equation (2.5)), we obtain a coupled set of N equations for
electrophoretic transport of co-ions in the presence of surface conduction,

∂ci

∂t
+ ∂

∂x

(
μiITci∑N

i=1 zi(μi − μN+1)ciF(A − Pδ) − μN+1ρwP

)
= 0. (2.8)

Assuming that (A − Pδ) ≈ A and introducing a new variable, ui = zi(μi − μN+1)Fci, the governing
equations can be written in a compact form given by

∂ui

∂t
+ ∂

∂x

(
αiui

σB + k

)
= 0, σB =

N∑
i=1

ui, (2.9)

where αi =μiIT/A and k = −μN+1ρwP/A. For our calculations, we assume that αi > 0, which
can be ensured by reversing the x-direction in case μiIT < 0. Note that ui are non-negative
scalar quantities and can be converted back to species concentrations ci using ci = ui/βi, where
βi = zi(μi − μN+1)F. We note that σB and k always have non-negative values. Therefore, the
presence of surface conduction in equation (2.9) reduces the propagation speed of concentration
waves for same magnitude of total current. We will discuss the effect of surface conduction
on wave propagation speed in §4. In the absence of wall surface charge (ρw = 0) or large A/P
ratio, the system of conservation laws (2.9) reduces to those for electrophoretic transport in large
microchannels where surface conduction is negligible [4].

To derive the governing equations (2.9), we have made several simplifying assumptions
which warrant further discussion. Owing to the assumption of thin EDLs, our model is
applicable when channel thickness is sufficiently small to ensure surface conduction competes
with bulk conduction, but not so small that EDL thickness is comparable with channel thickness.
For example, for a circular channel with diameter of 1 µm and surface charge density of
0.3 C m−2 [20], the contribution of surface conduction, k = −μN+1ρwP/A, to the electromigration
flux in equation (2.9) is comparable with that of bulk conduction for species concentrations up
to order 1–10 mM. As such species concentrations are typical of many electrophoresis techniques,
effects of surface conduction must be taken into account. Moreover, the EDL thickness at these
concentrations is order 1–10 nm, which justifies the thin EDL assumption. In our model, we
have accounted for additional conductivity associated with EDL by considering EDL and bulk
solution as two resistors in parallel (figure 1c). A rigorous derivation of such homogenized ion-
transport equations for binary electrolyte systems can be found in [21]. We also note that our
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‘leaky’ membrane-model based on the assumption of uniform background charge is similar to the
classical Teorell–Meyer–Sievers model [22,23] of ion-transport through ion-exchange membranes.
However, the Teorell–Meyer–Sievers model was not used to predict ion-concentration shock
waves prior to the work of Mani et al. [9]. In our analysis, we have also neglected the dispersive
effects of EOF. This is justified because, as predicted by Dydek et al. [24] and demonstrated
experimentally by Nam et al. [25], the hydrodynamic dispersion and associated overlimiting
current due to EOF is negligible for narrow microchannels with internal dimensions of order
1 µm. Moreover, the dispersive effects of EOF are important primarily in the ion-depleted region
next to an electrode or at the junction of microchannel and nanochannel [24,25]. However, we
note that the surface conduction due to electro-osmotic convection can be comparable with
surface conduction due to electromigration. Recently, Nielsen & Bruus [26] showed that for a
binary electrolyte in a circular microchannel with thin EDLs, electro-osmotic surface convection
can enhance surface conduction by a factor of (1 + 2Pe), where Pe is a normalization Peclet
number of order 0.2. As the effect of EOF is to only amplify surface conduction, our model yields
qualitatively correct predictions. Moreover, for quantitative comparison of model predictions
with experimental data the surface conductivity k in equation (2.9) can be used as a single fitting
parameter, as done by Zangle et al. [11], which can account for surface conduction due to both
electromigration and EOF.

(a) Reduction to Riemann invariants
The governing system of equations (2.9) bear a striking similarity with those describing multi-
component chromatography [3,27,28]. Analysis of such systems was pioneered by Rhee et al. [27]
and Kuznetsov [28] using the method of characteristics, and we here follow their approach to
construct analytical solutions to the system of conservation laws (2.9). We begin by reformulating
the set of equations (2.9) in terms of Riemann invariants so as to construct analytical solutions
using the the method of characteristics. We assume that the co-ionic species are numbered in order
of the magnitude of their unique electrophoretic mobilities, i.e. |μ1|< |μ2|< · · ·< |μN|. We first
show that the system of conservation laws (2.9) is strictly hyperbolic. To this end, we reformulate
equation (2.9) as

∂ui

∂t
+

N∑
j=1

Aij
∂uj

∂x
= 0, Aij = 1

σB + k

(
αiδij − αiui

σB + k

)
, (2.10)

where δij is the Kronecker delta. We note that here repeated indices do not imply Einstein
summation. The eigenvalues ξ of the Jacobian matrix Aij can be obtained by expanding the
determinant det(Aij − ξδij) = 0, which yields the following characteristic equation

L(u, R) =
N∏

i=1

(αi − R)

⎛
⎝ N∑

j=1

ujR

αj − R
− k

⎞
⎠= 0, R = (σB + k)ξ . (2.11)

As the electrophoretic mobilities of co-ionic species are unique and ordered (α1 <α2 · · ·<αN),
the roots of equation (2.11) {Rm}N

m=1 are such that 0<R1 ≤ α1 and αm−1 ≤ Rm ≤ αm, m = 2, . . . , N;
there are no repeated roots. Therefore, the eigenvalues ξm = Rm/(σB + k) of the Jacobian matrix
Aij are distinct and ordered as ξ1 < ξ2 < · · ·< ξN . This implies that the system of conservation
laws (2.9) is strictly hyperbolic [29]. In other words, we can reformulate the system of conservation
laws (2.9) in terms of Riemann invariants. We note that for a certain class of electrolytes consisting
of weak acids and bases, called oscillating electrolytes [30], the eigenvalues of the Jacobian of flux
vector are complex valued. Such electrolytes exhibit unstable electrophoretic transport of ions.
However, for fully ionized acids and bases, as we have assumed here, the eigenvalues are always
real valued and distinct as shown above.
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Interestingly, for the current system of conservation laws ∂Rm/∂ui is the left eigenvector of the
Jacobian matrix Aij corresponding to the eigenvalue ξm for m = 1, . . . , N. That is,

N∑
i=1

∂Rm

∂ui
Aij = ξm

∂Rm

∂uj
. (2.12)

This can be proved by differentiating both sides of equation (2.11) with respect to ui and noting
that ∂Rm/∂ui is collinear with the mth left eigenvector of Aij, l(m)

i = 1/(αi − Rm). By left-multiplying
the set of governing equations (2.9) with ∂Rm/∂ui and using (2.12), we obtain

∂Rm

∂t
+ ξm

∂Rm

∂x
= 0, m = 1, 2, . . . , N. (2.13)

Therefore, the roots {Rm}N
m=1 of equation (2.11) are the Riemann invariants for the system of

conservation laws (2.9). Reformulating the governing equations in terms of Riemann invariants
enables solution using the method of characteristics as equation (2.13) suggests that Rm remains
constant along the characteristic curves given by dx/dt = ξm.

To completely write the set of equations (2.13) in terms of the Riemann invariants, we need to
express ξm = Rm/(σB + k) in terms of the Riemann invariants alone. This necessitates an explicit
relation between σB + k and the Riemann invariants. To obtain this relation, we expand the
characteristic equation (2.11) to get

(−1)N+1(σB + k)RN + · · · − k
N∏

i=1

αi = 0. (2.14)

Next, using Vieta’s formula for product of roots of a polynomial [31], we obtain an explicit
relationship between σB + k and Riemann invariants,

σB + k = k
N∏

i=1

αi

Ri
. (2.15)

Therefore, the set of equations (2.9) can be completely written in terms of Riemann invariants as

∂Rm

∂t
+ ξm

∂Rm

∂x
= 0, ξm = Rm

k

N∏
i=1

Ri

αi
, m = 1, 2, . . . , N. (2.16)

We note that these set of equations differ from the case of conventional electrophoresis where
surface conduction is negligible. In the absence of surface conduction, one eigenvalue is zero and
the Riemann invariant corresponding to zero eigenvalue is the Kohlrausch regulating function
[16], whereas in the presence of surface conduction none of the eigenvalues are zero. Therefore,
unlike in conventional electrophoresis, the zone concentrations do not obey the Kohlrausch
regulating function when surface conduction is prominent.

(b) Relation between species concentration and Riemann invariants
To solve the governing equations (2.16) we need to convert the initial conditions in terms of
species concentrations to Riemann invariants and then convert the resulting solution in terms of
Riemann invariants back to species concentrations. This necessitates an explicit relation between
the species concentrations ci and the Riemann invariants. As the Riemann invariants {Rm}N

m=1 are
the N roots of polynomial equation L(u, R) = 0 (2.11) of order N, the polynomial L(u, R) can be
written as

L(u, R) = −(σB + k)
N∏

i=1

(Rm − R) =
N∏

m=1

(αm − R)

⎛
⎝ N∑

j=1

ujR

αj − R
− k

⎞
⎠ , (2.17)

where the coefficient −(σB + k) has been chosen to match the coefficient of RN in equation (2.11).
Finally, substituting R = αi in the above equation, we obtain an explicit expression for species
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concentration ci in terms of the Riemann invariants,

ci(R) = ui

βi
= − k

βi

N∏
m=1

(
1 − αi

Rm

)⎛⎝ N∏
j=1, j�=i

(
1 − αi

αj

)⎞
⎠

−1

. (2.18)

3. Analytical solution using the method of characteristics
The set of conservation laws (2.9) (or (2.16)) are a system of quasi-linear hyperbolic equations. This
suggests that multi-species electrophoretic transport in the presence of surface conduction can
exhibit nonlinear concentration waves such as shock and rarefaction waves. Moreover, the system
of conservation laws is strictly hyperbolic which precludes the existence of undercompressive
and overcompressive shocks. For the current system of conservation laws (2.16), the conditions
for genuine nonlinearity [29] hold for all characteristic fields. That is,

N∑
i=1

r(m)
i
∂ξm

∂ui
= −2ξm �= 0, r(m)

i = αiui

αi − Rm
, m = 1, 2, . . . , N, (3.1)

where r(m)
i is the right eigenvector of matrix Aij corresponding to the mth eigenvalue ξm. The

conditions of genuinely nonlinearity are analogous to the convexity of flux in scalar equations,
and they ensure that for a Riemann problem the characteristics are either compressing or
expanding. We can therefore construct solutions for the Riemann problem using classical shock
and expansion waves.

To illustrate the effect of surface conduction on the propagation of nonlinear concentration
waves in electrophoresis, we first present a generalized solution to the Riemann problem with
piecewise constant concentrations and a single discontinuity in the initial condition. Based on the
generalized solution, we illustrate the nature of nonlinear concentration waves that form when
surface conduction competes with bulk conduction in multi-species electrophoresis. In general,
for a multi-species electrophoresis system consisting of N species, the Riemann solution consists
of at most N nonlinear waves corresponding to N families of characteristics. These nonlinear
waves can be either shock or expansion waves depending upon the initial conditions. We note that
the conditions of genuine nonlinearity for all characteristic fields preclude formation of contact
discontinuities.

(a) Shock waves
A shock wave corresponding to mth characteristic family, termed m-shock, is formed due to
intersection of m-type characteristics on x–t plane as shown schematically in figure 2a. As the
eigenvalues are ordered 0< ξ1 < ξ2 < · · ·< ξN , the i-type characteristics have higher slope in x–t
plane than the m-shock if i<m. Therefore, the characteristics of families 1 to m − 1 cross the
m-shock from right as shown in figure 2b, whereas the characteristics of families m + 1 to N have
a smaller slope than that of the m-shock and hence they cross the m-shock from left (figure 2c). As
all the characteristics, except the m-type, do not intersect in the vicinity of m-shock the values of
Ri for i �= m can be found by tracing back the values of Ri to the initial conditions. The value of
Rm, however, changes across m-shock as m-type characteristics on either side of m-shock can be
traced back to different initial conditions. Therefore, the change in species concentrations across
m-shock results only from the change in mth Riemann invariant.

We now obtain the conditions on Riemann invariants for existence of shock waves. The
generalized solution for a shock wave must satisfy the integral form of conservation laws (2.9)
called the Hugoniot conditions,

v[ui] =
[
αiui

σB + k

]
, i = 1, 2, . . . , N, (3.2)

 on February 24, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


9

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20150661

...................................................

Rm Ri, i < m

[Rm] < 0

x x x

[Ri] = 0

m-shock
m characteristics

t

m-shock
i characteristics

Ri, i > m

[Ri] = 0

m-shock
i characteristics

(b)(a) (c)

Figure 2. Various characteristics of the system of conservation laws (2.16) across an m-shock. (a) m-shock forms due to the
interaction m-type characteristics in the x–t plane. Across an m-shock the mth Riemann invariant Rm decreases, that is,
[Rm]< 0. (b) Characteristics of families 1 tom − 1 cross them-shock from the right, whereas (c) the characteristics of families
m + 1 to N cross the m-shock from left. As all characteristics, except the m-type, do not intersect in the vicinity of m-shock,
[Ri]= 0 for i �= m.

where [f ] = f + − f − is the difference between downstream (denoted by superscript +) and
upstream values (denoted by superscript −) of any physical quantity f across the shock and v is
the shock speed. Therefore, knowing the values of Riemann invariants and concentrations across
the shock, the shock speed v can be obtained using equation (3.2). Moreover, the generalized
solution for m-shock must satisfy the following stability conditions

ξm(u−, t)> v > ξm(u+, t). (3.3)

These conditions ensure that the m-type characteristics on either side of m-shock intersect.
To translate the stability conditions (3.3) for the existence of shock waves in terms of Riemann

invariants, we follow an approach which is analogous to that employed by Zhukov [4] for shocks
in ITP, albeit in the absence of surface conduction. For our discussion, we would require the
following identities

L(u−, v(σ+
B + k)) = 0, (3.4)

L(u+, v(σ−
B + k)) = 0 (3.5)

and
L(u+, R)

(σ+
B + k)(R − v(σ−

B + k))
= L(u−, R)

(σ−
B + k)(R − v(σ+

B + k))
. (3.6)

These identities can be proved by direct substitution of the values of concentrations (or u)
and Riemann invariants R in the polynomial L(u, R) given by equation (2.11). Equations (3.4)
and (3.5) imply that v(σ−

B + k) and v(σ+
B + k) are the roots of polynomials L(u+, R) and L(u−, R),

respectively. Furthermore, using equations (2.17) and (3.6) we observe that all the remaining roots
of the polynomials L(u+, R) and L(u−, R) are identical. As the roots of polynomial L(u, R) are the
Riemann invariants, all but one Riemann invariants remain the same across the m-shock. Note
that if v(σ−

B + k) = v(σ+
B + k) then all Riemann invariants (and hence concentrations) are identical

across the discontinuity, which precludes the existence of a discontinuity. Let R+
i = v(σ−

B + k) and
R−

j = v(σ+
B + k) be non-coincident roots of polynomials L(u+, R) and L(u−, R), respectively. As

only one Riemann invariant can change across the shock, we take j = i = m. For the m-shock to
exist, the stability conditions (3.3) must hold. Using v = R+

m/(σ
−
B + k) (or v = R−

m/(σ
+
B + k)) and

ξm(u±, t) = R±
m/(σ

±
B + k), we see that the the stability conditions (3.3) are satisfied if [Rm]< 0. As

all other Riemann invariants are identical across the m-shock [Ri] = 0 ∀ i �= m.
Therefore, the necessary conditions for existence of m-shock are [Rm]< 0 and [Ri] = 0 ∀ i �= m.

To show that the converse is also true, we assume that [Rm]< 0 and [Ri] = 0 ∀ i �= m. Substituting
the expression for ui(R) given by equation (2.18) in the Hugoniot conditions (3.2), we obtain

v

(
1

R−
m

− 1
R+

m

)
= 1
σ+

B + k

(
1 − αi

R+
m

)
− 1
σ−

B + k

(
1 − αi

R−
m

)
. (3.7)

 on February 24, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


10

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20150661

...................................................

Rm

t

Ri, i < m

R+
m > R–

m

+– +–

R+
i = R–

i

x0 x x0 x

m-rarefaction
m characteristics

m-rarefaction
i characteristics

(b)(a)

+–

R+
i = R–

i

x0 x

m-rarefaction
i characteristics

Ri, i > m(c)

Figure 3. Various characteristics of the systemof conservation laws (2.16) across anm-rarefactionwave. (a)m-rarefactionwave
is characterized bym-type characteristics spreading out in the x–t plane. The edges of them-rarefactionwave are parallel to the
m-type characteristics in the neighbouring regions with uniform concentrations. The mth Riemann invariant increases across
them-rarefaction wave, that is, R+m > R−m . (b) The characteristics of families 1 tom − 1 cross them-rarefaction from the right
whereas (c) the characteristics of families m + 1 to N cross the m-rarefaction from the left. The values of Ri for i �= m do not
change across them-rarefaction wave.

Next, substituting the expression for (σB + k) from equation (2.15) in equation (3.7), we obtain the
dependence of speed v of discontinuity on the Riemann invariants,

v = R−
mR+

m

kαm

N∏
i=1,i�=m

Ri

αi
. (3.8)

Using this relation and equation (2.16), we conclude that the stability conditions (3.3) hold when
[Rm]< 0. To summarize, m-shock exists if and only if [Rm]< 0 and [Ri] = 0 ∀ i �= m. Moreover,
[Rm]< 0 ensures that the stability conditions (3.3) are satisfied.

(b) Rarefaction waves
If the conditions on Riemann invariants for existence of a shock wave do not hold, it can
result in formation of a rarefaction wave. Figure 3 illustrates the formation of m-rarefaction
corresponding to mth characteristic family. The m-rarefaction wave is characterized by m-type
characteristics spreading out in the x–t plane. The edges of m-rarefaction wave are bounded by
m-type characteristics corresponding to the neighbouring regions with uniform concentrations.
Analogous to the case of shock waves, the characteristics of families 1 to m − 1 cross the
m-rarefaction from the right, as shown in figure 3b, whereas the characteristics of families m + 1
to N have a smaller slope than that of m-rarefaction and hence they cross the m-rarefaction from
left (figure 3c). As all characteristics, except the m-type, simply pass through the m-rarefaction
wave without interacting with each other the values of corresponding Riemann invariants can be
obtained by tracing back their values to the initial conditions. Therefore, the variation in species
concentrations through the m-rarefaction wave results only from the change in mth Riemann
invariant. The mth Riemann invariant varies continuously through the m-rarefaction wave.

For a Riemann problem, the governing equations (2.16) admit a similarity solution for
rarefaction waves with z = (x − x0)/(t − t0) as the similarity variable. Here (x0, t0) are the
coordinates of the centre of similarity solution. Substituting Rm = Rm(z) in the governing
equations (2.16), we obtain

dRm

dz
(ξm − z) = 0, m = 1, . . . , N. (3.9)

This system has N non-trivial solutions for Riemann invariants of the type ξm(R) = z and
Ri = constant for i �= m. Therefore, the variation of Riemann invariants through m-rarefaction
wave is given by

Rm(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

R−
m, z< ξm(R−),

(ψmz)1/2, ξm(R−)< z< ξm(R+),

R+
m, z> ξm(R+),

Ri = const., i �= m, i = 1, . . . , N. (3.10)
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The expression forψm can be obtained using (2.16) and noting that ξm = z inside the m-rarerfaction
wave,

ψm = kαm

N∏
i=1,i�=m

αi

Ri
. (3.11)

The m-rarefaction wave of the form given by equation (3.10) connects two constant solutions
of the equation (2.16) R− = {R−

i }N
i=1 and R+ = {R+

i }N
i=1 continuously if and only if R+

m >R−
m, R+

i =
R−

i ∀ i �= m. This is because, the two constant solutions R− and R+ cannot be connected by m-shock
when R+

m >R−
m. Moreover, the genuine nonlinearity of the mth characteristic field ensures that ξm

varies monotonically with z within the m-rarefaction wave [29].

(c) Construction of solution
Having obtained the conditions on Riemann invariants for existence of shock and rarefaction
waves we can construct the generalized solution for the Riemann problem for system (2.16), that
is, with piecewise constant initial values of Riemann invariants with a single discontinuity,

Ri(x, t = 0) =
{

R−
i , x< x0,

R+
i , x> x0,

i = 1, . . . , N. (3.12)

The generalized solution of governing equations (2.16) for such initial conditions consists of only
shock and rarefaction waves; there are at most N nonlinear waves. Based on the earlier discussion
we know that only one Riemann invariant Rm corresponding to the mth characteristic field can
change across the m-shock or m-rarefaction wave. The remaining Riemann invariants are the
same across the shock or rarefaction wave and can be found by tracing back their values along
the characteristics to the initial data. Therefore, to construct the solution we assume N nonlinear
waves emanating from the initial point of discontinuity. On both sides of the mth nonlinear wave
(either shock or rarefaction wave) Ri = R+

i for i<m and Ri = R−
i for i>m, whereas Rm = R+

m and
Rm = R−

m, respectively, in front and behind the mth nonlinear wave. After obtaining the values
of Riemann invariants across all the nonlinear waves, each wave can be classified as shock or
rarefaction based on the conditions derived above. That is, the nonlinear wave is m-shock if
R+

m <R−
m and m-rarefaction wave if R+

m >R−
m. In the case that the mth wave is a shock wave, the

shock speed can be obtained using equation (3.8), whereas for rarefaction wave the solution can
be completed using equation (3.10). Of course, if R+

k = R−
k for some values of k then there will be

no nonlinear wave corresponding to the k-th characteristic field.
When the initial conditions have only one discontinuity, the nonlinear waves do not interact

with each other. For practical electrophoresis systems the initial conditions often have piecewise-
constant distribution of concentrations (or Riemann invariants) with several discontinuities. In
such cases, nonlinear waves emanating from different points of initial discontinuity can interact.
The interaction of nonlinear waves can be analysed by treating the instant of wave interaction
as a new initial condition. In the current work, we consider electrophoretic systems involving
interaction of only shock waves. Therefore, the instant of shock interaction can be regarded as a
new piecewise-constant initial condition of the form (3.12) for which the solution procedure has
been provided above.

4. Results and discussion
In this section, we illustrate the effect of surface conduction on the propagation of nonlinear
concentration waves through examples of various electrophoretic systems. We present analytical
solutions to the set of conservation laws (2.9) for different initial conditions using the method
of characteristics presented in §3. We begin by reviewing the formation of shock and rarefaction
waves in binary electrolyte systems in the presence of surface conduction. Thereafter, we present
analytical solutions for multi-species electrophoretic systems such as ITP and compare our results
with similar electrophoretic systems but with negligible surface conduction.
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(a) Electromigration in binary electrolytes
We begin by illustrating the effect of surface conduction on the evolution of conductivity gradients
in a binary electrolyte due to applied electric field. This is of practical significance as gradients in
binary electrolyte are observed during FASS and concentration polarization at the interface of
a microchannel and nanochannel [13]. The latter phenomenon has found applications in shock-
electrodialysis for deionization of water [10]. Nonlinear waves in binary electrolytes due to the
competing effects of bulk and surface conduction have been analysed theoretically by Mani et al.
[9] and observed experimentally by Zangle et al. [11]. Here we review the problem of nonlinear
waves in binary electrolytes considered by Mani et al. [9] to demonstrate the application of
our generalized mathematical model and solution methodology for multi-species electrophoretic
systems. We will use this analysis to explain the results for multi-species electrophoretic systems
in later sections.

We consider a binary electrolyte system consisting of a co-ionic (anion) and a counter-ionic
(cation) species denoted by subscripts 1 and 2, respectively. Without loss of generality, the surface
charge is assumed to have negative polarity. The governing equations (2.9) in terms of Riemann
invariants for a binary electrolyte system simplify to

∂R1

∂t
+ R2

1
kα1

∂R1

∂x
= 0. (4.1)

This equation is a quasi-linear, hyperbolic equation as the wave speed R2
1/(kα1) depends on R1.

Therefore, the electrophoretic system can exhibit shock and rarefaction waves depending upon
the initial conditions. This is in contrast with the case when surface conduction is negligible (in
large microchannels) where concentration gradients in binary electrolytes remain stationary due
to the zero eigenvalue of the electrophoretic system [16].

To demonstrate the effect of surface conduction on concentration wave propagation in binary
electrolytes, we consider an idealized case of a binary electrolyte system with an initial co-
ion concentration distribution c1(x, 0) shown in figure 4a. For our calculations, we assume
that the channel has a uniform surface charge density with ρwP/A = −1.0 × 106 C m−3. This
value can correspond to, for example, surface charge density of 0.25 C m−2 and a circular
channel cross section with diameter of 1 µm. The binary electrolyte is sodium chloride and
hence chloride (z = −1, μ= −79.1 × 10−9 m2 V−1 s−1) is the co-ion and sodium (z = 1, μ= 51.9 ×
10−9 m2 V−1 s−1) is the counter-ion. The total current density, IT/A, through the solution is taken
as 2450 A m−2 with electric field vector pointing towards the left. This value is typical of current
densities used in electrophoresis experiments [32]. The initial conditions shown in figure 4a can
be written in terms of co-ion concentration c1 and Riemann invariant R1 (using equation (2.11)) as

c1(x, 0) =
⎧⎨
⎩

cH, x1 < x< x2

cL, otherwise
and R1(x, 0) =

⎧⎪⎪⎨
⎪⎪⎩

α1k
β1cH + k

, x1 < x< x2

α1k
β1cL + k

, otherwise
, (4.2)

where cH and cL denote high and low co-ion concentrations, respectively.
Following the solution procedure outlined in §3, this initial condition results in formation

of two nonlinear waves emanating from the initial points of discontinuity, (x1, 0) and (x2, 0), as
shown in figure 4b. These waves separate the x–t plane into three zones I, II and III depicted in
figure 4b. Across the trailing wave originating from (x1, 0), [R1] = [α1k/(β1c1 + k)]< 0 as cH > cL.
Therefore, the trailing wave is a 1-shock wave. Knowing the value of Riemann invariant R1 across
the 1-shock in zones I and II, the shock speed v1S can be calculated using equation (3.8) to get

v1S = kα1

(β1cL + k)(β1cH + k)
(4.3)

whereas across the leading wave originating from (x2, 0), R+
1 >R−

1 which implies that it is a
1-rarefaction wave. The edges of a 1-rarefaction wave propagate at speeds equal to the local wave
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Figure 4. Effect of surface conduction on the evolution of conductivity gradients in a binary electrolyte under applied electric
field. (a) Initial distribution of co-ions in the bulk solution at t = 0 s. (b) Application of a left-pointing electric field causes the
trailing discontinuity in the initial concentration distribution (at x = x1) to propagate as a 1-shock wave whereas the leading
interface disperses to form a 1-rarefactionwave centred at (x2, 0). The values of Riemann invariant R1 in zones I–III can be traced
back to the initial conditions whereas the variation of R1 inside a 1-rarefaction wave is given by the similarity solution (3.10).
(c) The concentration profile of co-ions at a later time (t = 20 s) shows a sharp 1-shock and a dispersed 1-rarefaction wave.

propagation speed R2
1/(kα1), that is, the eigenvalue ξ1. As the values of R1 in zones II and III

remain unchanged from the initial conditions, propagation speeds of the edges of 1-rarefaction
wave are given by

ξ−
1R = kα1

(β1cH + k)2 and ξ+
1R = kα1

(β1cL + k)2 . (4.4)

The variation of R1 inside the rarefaction wave is given by equation (3.10). Therefore, the
distributions of Riemann invariant R1 and co-ion concentration for t> 0 are given by

R1(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1k
β1cH + k

, v1St< x − x1 < ξ
−
1Rt

(
kα1

(x − x2)
t

)1/2
, ξ−

1Rt< x − x2 < ξ
+
1Rt

α1k
β1cL + k

, otherwise

, (4.5)

and

c1(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cH, v1St< x − x1 < ξ
−
1Rt

1
β1

(
α1kt

x − x2

)1/2
− k
β1

, ξ−
1Rt< x − x2 < ξ

+
1Rt

cL, otherwise

. (4.6)

The concentration distribution of co-ion at a later time (t = 20 s) is shown in figure 4c. The
left interface, which is a shock wave, remains sharp and propagates towards the right, whereas
the right interface, which is a rarefaction wave, disperses over time while propagating towards
the right. These results can be explained qualitatively by noting that the wave speed R2

1/(kα1)
in equation (4.1) varies inversely with the co-ion concentration, as R1 varies inversely with c1.
That is, the point with higher concentration has lower wave speed and vice versa. Therefore, the
positive gradient in the initial co-ion concentration remains sharp and propagates as a shock wave
whereas the negative gradient in co-ion concentration disperses to form a rarefaction wave as the
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leading edge of a wave with lower concentration has a higher wave speed than the trailing edge
with higher concentration and lower wave speed.

(b) Shock and rarefaction waves in discontinuous electrolyte system
Next, we analyse the propagation of concentration waves due to the competing effects of bulk and
surface conduction in an electrolyte system consisting of two co-ionic species and one counter-
ionic species. We assume that the initial distribution of co-ions has a discontinuity as shown
schematically in figure 5a. Such an electrolyte system is used in ITP, where co-ion (1) is the TE
and co-ion (2) is the LE. Although in ITP, LE ion has higher mobility than the TE ions, here we
consider a generalized case where co-ion 1 may have higher or lower mobility than co-ion 2.

Upon application of an electric field, the discontinuous initial conditions shown in figure 5a
give way to two nonlinear waves originating from the point of discontinuity (x0, 0) (figure 5b).
These waves divide the x–t plane into three zones (I–III). Following our discussion on the
construction of a solution in §3c, the two nonlinear waves can be either shock or rarefaction
waves depending on the values of Riemann invariants (R1 and R2) in zones I–III. To obtain
the concentrations and the Riemann invariants in various zones, we begin by writing the initial
conditions in terms of Riemann invariants. Knowing the initial species concentrations and using
equation (2.11), we obtain the initial values of Riemann invariants (table 1). Here, we have
denoted the initial values of Riemann invariants in front and behind the initial discontinuity with
subscripts + and −, respectively. We note that during the assignment of initial values of Riemann
invariants to first and second characteristic fields we have assumed that α2k/(β2c0

2 + k)<α1,
which ensures R+

1 <R+
2 . This assumption is valid when surface conduction does not dominate

over bulk conduction, which is the case for most electrophoretic processes. Next, we obtain
the values of R1 and R2 in zones I–III by tracing back their values to the initial conditions
as shown in figure 5b. Thereafter, we obtain the species concentrations in all the zones using
equation (2.18) (table 1).

Having obtained the values of Riemann invariants in all the zones, we can check for the
conditions on Riemann invariants provided in §3a,b to classify the nonlinear waves as shock
and rarefaction waves. That is, if R+

1 <R−
1 the trailing wave is a 1-shock wave. Otherwise, it is a

1-rarefaction wave. Similarly, the leading wave is a 2-shock wave if and only if R+
2 <R−

2 , and it is a
2-rarefaction wave if and only R+

2 >R−
2 . In terms of species concentrations and mobilities, 1-shock

wave exists if α2(β1c0
1 + k)<α1(β2c0

2 + k) and 2-shock exists if α1 <α2 (or |μ1|< |μ2|). The latter
condition is the same as that for existence of shock wave in conventional ITP. That is, the LE ion
should have higher mobility than the TE ion for a shock to occur between the LE and TE zones.
If the conditions for shock waves do not hold, the corresponding wave evolves as a rarefaction
wave. Finally, to obtain the complete co-ion distribution we use equation (3.8) to calculate the
shock speeds and similarity solution (3.10) to find the structure of the rarefaction wave.

To illustrate the application of the above analytical solution, we consider a practical anionic
ITP system in a channel with negatively charged walls. Here, the TE ion (1) is methyl
sulphonate (z = −1, μ= −50.6 × 10−9 m2 V−1 s−1), the LE ion (2) is chloride (z = −1, μ= −79.1 ×
10−9 m2 V−1 s−1), and the background ion (3) is sodium (z = +1, μ= 51.9 × 10−9 m2 V−1 s−1). We
assume that the channel walls have uniform charge density with ρwP/A = −1.0 × 106 C m−3 and
the total current density is 2450 A m−2. We consider two cases, shown in figures 6a and 7a, with
the same LE ion concentration but different TE ion concentrations. For both cases, application of
an electric field results in the formation of a 2-shock wave as the mobility of the LE ion is greater
than that of a TE ion. However, as discussed above, the first nonlinear wave can be a shock or
rarefaction wave depending upon the initial concentration of the TE ion relative to that of the
LE ion.

When the initial TE ion concentration is low (figure 6a), the first nonlinear wave is a 1-shock
wave. This is characterized by a decrease in value of R1 and a corresponding increase in
TE concentration from zone I to II as shown in figure 6b,d. The formation of 1-shock can be
explained as follows. Upon application of an electric field, the TE ions displace the LE ions and

 on February 24, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


15

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20150661

...................................................

initial condition (t = 0) solution on x–t plane
1-shock or
1-rarefaction
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Figure 5. Schematic illustrating formation of shock and rarefaction waves in an discontinuous electrolyte system consisting of
two co-ionic and one counter-ionic species. (a) Initially, the zones consisting of co-ions 1 and 2 are separated by a sharp zone
boundary at x = x0. (b)When electric field is applied, electromigration of co-ions under the effect of surface conduction results
in formationof twononlinearwaves, bothoriginating from the locationof initial discontinuity x = x0. Thesewaves canbeeither
shock or rarefaction waves depending upon the electrophoretic mobilities and concentrations of all the species. Irrespective
of the type of nonlinear wave, R1 and R2 vary only across the waves belonging to first and second characteristic families,
respectively. The values of Riemann invariants in all the three zones can, therefore, be traced back to the initial conditions.

Table 1. Species concentrations and Riemann invariants in various zones at t = 0 and t> 0 for the electrophoretic system
shown in figure 5.

initial condition (t = 0) t> 0

x ≤ x0 x> x0 zone I zone II zone III

c1 c01 0 c01
α1β2

α2β1
c02 − k

β1

(
1 − α1

α2

)
0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c2 0 c02 0 0 c02
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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simultaneously the concentration of TE ions adjusts to a new value so as to maintain continuity
of current. This results in a positive gradient in TE concentration. As discussed in §4a, a positive
concentration gradient in TE, which is locally a binary electrolyte, sharpens to form a shock wave.

In figure 6, we also present results for the case when surface conduction is negligible using
the analytical solution provided by Zhukov [4]. When surface conduction is absent (ρw = 0), ion
transport in ITP results in formation of a propagating 2-shock wave separating LE and TE zones.
Behind the 2-shock, the TE concentration adjusts to a new value so as to maintain the continuity
of the current. The adjusted TE concentration is governed by the Kohlrausch regulating function
[16] and is equal to α1β2c0

2/(α2β1). This adjusted TE concentration is higher compared with the
case when surface conduction is present. More importantly, the positive concentration gradient
in TE which forms due to the re-adjustment of TE concentration remains stationary in the absence
of surface conduction. This stationary interface can be described as a contact discontinuity as it
results due to the zero eigenvalue of governing equations (2.9) with ρw = 0. Another difference
between ITP with and without surface conduction is that the speed of 2-shock separating LE and
TE zones is lower in the presence of surface conduction compared with the case when surface
conduction is absent. This difference in shock speeds can be attributed to the fact that only a
part of the total current flows through the bulk solution when surface conduction is present.
Consequently, the magnitude of the electric field in the bulk solution is lower in the presence of a
surface condition which reduces the speed of 2-shock.

In figure 7, we present results for the case when the initial TE concentration is higher compared
with the adjusted TE concentration. The increase in TE concentration has no effect on the speed
of 2-shock and the concentration of TE in the adjusted TE zone for cases with and without surface
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Figure 6. Effect of surface conduction on the dynamics of ITP. Shown here is the case where the initial TE ion concentration is
relatively low comparedwith the LE ion concentration. (a) Initially at t = 0 s, the LE and TE zones are separated by a sharp zone
boundary. Plots (b) and (c) show the spatio-temporal evolution of concentration waves respectively for the cases when surface
conduction is present and absent. In both cases, a 2-shock forms between the LE and TE zones. (b) In the presence of surface
conduction 1-shock separates the zonesof initial andadjustedTE. (d) In theabsenceof surface conduction, the interfacebetween
initial and adjusted TE zone is a stationary contact discontinuity. (d) Concentrations of LE and TE at a later time (t = 50 s)
obtained from the analytical solutions depicted in (b) and (c). Surface conduction results in a decrease in speed of the 2-shock.
Moreover, in the presence of surface conduction the adjusted TE concentration behind the 2-shock is lower compared with the
case where surface conduction is absent.

conduction. However, the negative concentration gradient that results from adjustment of TE
causes the interface to disperse in the presence of surface conduction. Consequently, the interface
separating the initial and the adjusted TE zones results in the formation of a rarefaction wave as
shown in figure 7b,d whereas in the absence of surface conduction, the concentration gradient in
TE is a stationary contact discontinuity as shown in figure 7c.

(c) Preconcentration and separation in ITP
Lastly, we consider a practical case of simultaneous preconcentration and separation of analytes
in plateau-mode ITP in the presence of surface conduction. In plateau-mode ITP, a mixture of
analytes is initially injected between zones of LE and TE. Upon application of an electric field,
the analytes segregate into purified zones and simultaneously their concentrations adapt to
the concentration of LE, resulting in preconcentration [2]. The dynamics of this electrophoretic
process involves formation and interaction of several nonlinear waves (shock and rarefaction
waves). After the interaction of nonlinear waves subsides, the process is characterized by purified
analytes zones between LE and TE zones. These zones are separated by sharp zone boundaries
which are shock waves in ion concentrations.

We here consider an anionic ITP system wherein LE ion is chloride (z = +1, μ=
−79.1 × 10−9 m2 V−1 s−1), TE ion is methyl sulfonate (z = −1, μ= −50.6 × 10−9 m2 V−1 s−1) and
background ion is sodium (z = +1, μ= 51.9 × 10−9 m2V−1 s−1). We consider two analytes,
fluoride (z = −1,μ= −57.4 × 10−9 m2 V−1 s−1) and nitrate (z = −1,μ= −74.1 × 10−9 m2 V−1 s−1).
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Figure 7. Effect of surface conduction on the dynamics of ITP. Shown here is the case where the initial TE ion concentration
is higher than that in figure 6. (a) Compared with the results presented in figure 6, the only change due to an increase in
initial TE concentration is the nature of wave separating the initial and adjusted TE zones. As shown in (b) and (c), in this case a
1-rarefaction wave separates the zones of initial and adjusted TE in the presence of surface conduction.

The current density is taken to be 2450 Am−2. We assume that the channel wall has a uniform
charge density with ρwP/A = −1.0 × 106 C m−3. In our analysis, we denote TE, fluoride, nitrate,
LE and background ions with subscripts 1 to 5, respectively. Figure 8a shows the initial conditions
where the mixture of analytes is initially sandwiched between LE and TE zones. The generalized
solution for this type of initial condition in the absence of surface conduction has been provided
by Babskii et al. [3]. Figure 8b,c show the spatial variation of species concentrations at t = 25 s
and t = 50 s, respectively, when surface conduction is absent. The analytes segregate into purified
zones over time. The local TE concentration adapts to the Kohlrausch regulating function [16] set
by the initial condition and the concentration gradients in the TE zone remain stationary in the
absence of surface conduction.

Next, we use the solution methodology discussed in §3c to construct the analytical solution
when surface conduction is present. Figure 8d shows the spatiotemporal evolution of various
zones and concentration waves on the x–t diagram. The x–t diagram shows interaction of
shock waves which is accompanied by extinction of old zones and emergence of new zones.
In figure 8e,f, we show the spatial variation of species concentrations at t = 25 s and t = 50 s,
respectively, when surface conduction is taken into account. At t = 25 s, the analytes are partially
separated and there is a zone around x = 50 mm where the analytes are still mixed. Moreover,
there is an additional rarefaction wave at x = 25 mm and a shock wave at x = 42 mm in
the TE zone. These nonlinear waves in TE zone are not present in conventional ITP where
surface conduction is absent. Instead, in the absence of surface conduction the TE zone has
contact discontinuities corresponding to the initial discontinuities in the Kohlrausch regulating
function [16] as shown in figure 8b,c. At t = 50 s, the analytes are completely segregated into
purified zones, separated from other zones with propagating shock waves. Note that, the
rarefaction and the shock wave in the TE zone shown in figure 8e,f also propagate towards
the right. Such propagating concentration gradients will be detected during ITP experiments
along with the gradients associated with analyte zones as they pass over a point-detector, such as
conductivity and absorbance detectors [33]. Therefore, additional nonlinear waves resulting from
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Figure 8. Preconcentration and separation of two analytes (fluoride and nitrate) in anionic ITP. (a) Initially at t = 0 s, fluoride
and nitrate are mixed together in a zone sandwiched between the LE and TE zones. The zones of LE, TE and the analyte mixture
are initially separated by sharp zone boundaries. (b,c) In the absence of surface conduction, the analytes segregate into purified
zones and the concentration gradients in the TE zone remain stationary. (d) The evolution of various zones and nonlinear waves
in x–t plane in the presence of surface conduction. The initial phase of ITP separation is characterized by an interaction of shock
waves accompanied by extinction of old zones and emergence of new zones. (e) Species concentrations at time t = 25 s when
fluoride and nitrate are partially separated. (f ) At t = 50 s, fluoride and nitrate are fully separated and both zones migrate at
the same speed. This can also be seen in (d) where 2-, 3- and 4-shocks are parallel in the x–t plane approximately after t = 50 s.

the competition of bulk and surface conduction must be taken into account while interpreting
electrophoresis experiments, wherein surface conduction is appreciable.

5. Conclusion
We have developed a theory for multi-species electrophoretic transport of ions in shallow
microchannels and nanochannels, where surface conduction through EDL competes with bulk
conduction. Our model is applicable for arbitrary large number of co-ions and a single counter-
ionic species having opposite charge polarity compared with the surface charge. Based on
our mathematical model, we show that the Kohlrausch regulating function [16], which is
widely used to calculate zone concentrations in conventional electrophoresis, is not valid in the
presence of surface conduction. This is because electrophoretic systems with appreciable surface
conduction do not have zero valued eigenmobility (eigenvalue of the Jacobian of flux). For
the same reason, such systems do not exhibit contact discontinuities in species concentrations.
Instead, nonlinearities resulting from surface conduction and multi-species electromigration
cause concentration gradients to propagate only as shock or expansion waves. To analyse
the propagation of such nonlinear waves and construct analytical solutions to the governing
equations, we have presented a generalized solution methodology based on the method of
characteristics. In particular, we have derived the necessary and sufficient conditions for the
existence of shock and expansion waves in electrophoretic processes where bulk and surface
conduction compete with each other.

We have demonstrated the application of our model and solution methodology for analysing
practical electrophoretic systems employing binary and multi-species electrolytes. In particular,
we used the example of ITP to highlight the effects of surface conduction on electrophoretic
processes. By comparing the concentration wave propagation in ITP with and without surface
conduction, we showed that the propagation speed of ITP shocks decreases in the presence
of surface conduction. This is because, for a fixed total current, surface conduction leads
to reduction in current through the bulk solution which in turn reduces the shock speeds.
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Moreover, the competing effects of bulk and surface conduction result in lower levels of
sample preconcentration in ITP compared with conventional ITP. Owing to the absence of zero
eigenmobility of the electrophoretic system in the presence of surface conduction, the interface
formed between the initial TE zone and the adjusted TE zone in ITP does not remain stationary.
Instead, this interface propagates as a shock or an expansion fan, depending upon the initial TE
concentration.

Although, here we have demonstrated the application of our model for analysis of
electrophoresis techniques, our theory is equally applicable for understanding other electrokinetic
processes where surface conduction is important, including shock-electrodialysis based water
deionization [10] and concentration polarization in DC electro-osmotic pumps [34]. Current
analyses of such processes are limited to those with binary electrolytes even though in practical
applications one would expect the presence of more than two ionic species. Our theory which
takes into account the combined effect of nonlinearities induced by surface conduction and
multi-species electromigration can help in better understanding and design of these electrokinetic
processes.
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